Package: glmmLasso 1.6.3
glmmLasso: Variable Selection for Generalized Linear Mixed Models by L1-Penalized Estimation
A variable selection approach for generalized linear mixed models by L1-penalized estimation is provided, see Groll and Tutz (2014) <doi:10.1007/s11222-012-9359-z>. See also Groll and Tutz (2017) <doi:10.1007/s10985-016-9359-y> for discrete survival models including heterogeneity.
Authors:
glmmLasso_1.6.3.tar.gz
glmmLasso_1.6.3.zip(r-4.5)glmmLasso_1.6.3.zip(r-4.4)glmmLasso_1.6.3.zip(r-4.3)
glmmLasso_1.6.3.tgz(r-4.4-x86_64)glmmLasso_1.6.3.tgz(r-4.4-arm64)glmmLasso_1.6.3.tgz(r-4.3-x86_64)glmmLasso_1.6.3.tgz(r-4.3-arm64)
glmmLasso_1.6.3.tar.gz(r-4.5-noble)glmmLasso_1.6.3.tar.gz(r-4.4-noble)
glmmLasso_1.6.3.tgz(r-4.4-emscripten)glmmLasso_1.6.3.tgz(r-4.3-emscripten)
glmmLasso.pdf |glmmLasso.html✨
glmmLasso/json (API)
# Install 'glmmLasso' in R: |
install.packages('glmmLasso', repos = c('https://hoarzpassey.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 1 years agofrom:6d3e5465af. Checks:OK: 3 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 11 2024 |
R-4.5-win-x86_64 | OK | Nov 11 2024 |
R-4.5-linux-x86_64 | OK | Nov 11 2024 |
R-4.4-win-x86_64 | NOTE | Nov 11 2024 |
R-4.4-mac-x86_64 | NOTE | Nov 11 2024 |
R-4.4-mac-aarch64 | NOTE | Nov 11 2024 |
R-4.3-win-x86_64 | NOTE | Nov 11 2024 |
R-4.3-mac-x86_64 | NOTE | Nov 11 2024 |
R-4.3-mac-aarch64 | NOTE | Nov 11 2024 |